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Introduction

* Face recognition in unconstrained environments is very challenging
problem.

®» |nter-class variations

Jerhifgh Gagpénter Phiddéckelson
* Facial poses, expressions, and illumination changes cause problems to misidentify
faces of different identities as the same identity.

®» |ntra-class variations

* Such variations within the same identity could overwhelm the variations due to identity
differences and make face recognition challenging.
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Overview

* Training for Features
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Discriminative Feature Learning (1/2)

 Joint Loss Function for Feature Learning

Ltotal — Ltriplets + Lpairs + Lidentity

* Triplet Loss Lyyipiets

|F () — F(In)ll, )
\F(g) — FUp)Il, +m
» The output of network is represented by F(I) € R%,

Ltriplets = max <0» 1 -

* m s a margin: define the minimum ratio between the negative pairs and the positive
pairs in the Euclidean space

Ref. I'p negative Iy
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Discriminative Feature Learning (2/2)

* Pairwise Loss Lgirs
= Minimize the absolute distances between the positive data in the triplets T.

Lyars = ) IFUR) = FURI3
(IR, Ip)EVT

IF(Ig) = F(Ip)II3 \F(Ig) — F(Ip)|I3 Jlelmlzed

Ref. I R positive I'p Ref. I positive Ip

twj . Learning t;-, §

* Identity loss L;gentity

= Fi(I")
Lidentity - = Z log n eFj(Ii)
i=1 j=1

= Use negative log-likelihood loss with softmax.
= Reflect characteristics for each identity.
= Encourage the separability of features
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Description using Deep Ensemble (1/2)
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= |n conventional applications of DCNN, the output of the last fully connected layer f2 is
used only as a feature.

= Use DNN features taken from f1 and f2 fully connected layers.
= Multi-scale feature effect
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Description using Deep Ensemble (2/2)

* Deep Ensemble

Concatenation
Deep Net (95x95) < Dimensionality
Deep Net (67x67) <3 reduction by

Deep Net (47x47) <3 PCA
Deep Net’ (95x95) <3 1024\ TL-Joint
8192 Bayesian
~ Deep Net (95x95) << el oy

“/\ » Deep Net (67x67) <3
s‘j)g Deep Net (47x47) <3
Deep Net’ (95x95) <3 1024

8192

Feature e}traction from multiple Neural Networks and deep
ensemble generation
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Fusion

e Score-level fusion
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= Use similarities DCNN ensemble and similarities of high-dim. LBP as features.
= Use Support Vector Machine (SVM) as a classifier (recognizer).
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Experimental Results (1/2)

* Training data » Test data - LFW (Labeled Faces in the
= 4,048 subjects with more than equal Wild)
10 images (198,018). » Each of 10 folders consists of 300 intra
= 396,036 face images (horizontal pairs and 300 extra pairs
flipped) are used to generate about (total: 6,000 pairs).
4M triplets of faces for training. = 10-fold cross validation.
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Experimental Results (2/2)

* Results on LFW

No. of No. of : o
Method S DNNs Feature dim. Accuracy (%)
Human - - - 97.53
Joint Bayesian 99,773 - 8,000 92.42
Fisher vector face N/A - 256 93.03
Tom-vs-Pete classifier 20,639 - 5,000 93.30
High-dim. LBP 99,773 - 2,000 95.17
TL-Joint Bayesian 99,773 - 2,000 96.23
DeepFace 4M 9 4,096 x 4 97.25
DeeplD 202,599 120 150 (PCA) 97.45
DeepID3 300,000 50 300 x 100 99.53
FaceNet 200M 1 128 99.63
Learning from Scratch 494,414 2 320 97.73
Proposed Method (+Joint Bayesian) 1,024
198,018 4 (PCA) 96.23
Proposed Method (+TL-Joint Bayesian) 1,024
198,018 4 (PCA) 98.33
Proposed Method (Fusion) 198,018 4 6 99.08
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Discussion & Conclusion

e Joint Loss Function to learn a discriminative feature is effective

* The proposed method is more efficient
= Small number of data - only 198,018 training images
= Only 4 different deep network models used
= Accuracy: 99.08% (Score-level Fusion)

* The proposed method is useful when

= The amount of training data is insufficient to train
deep neural networks.
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Appendix
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Deep Convolution Neural Network ArchitecFurg

FC (1,024)

—

e Multi-scale Convolution Layer Block (MCLB)

= Consists of 1x1, 3x3, 5x5 convolution layers, and 3x3 max pooling layer. N

Output
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e Structure of Deep Convolution Neural Network
= Constructed by stacking MCLBs on top of each other (24 layers deep). 1

= All convolutions and fully connected layers use the ReLU non-linear activation. T
= Average pooling takes the average of each feature map and sums out the spatial

information.

1x1
convolutions

r 1x1 Conv (200)

T

Avg. pool
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= Dropout is only applied to the last fully connected layer for regularization. T

Input layer
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Discriminative Feature Learning

* After training with only triplet loss, we observed that the range of
distances between each pair data was not within the certain range.

= Although the ratio of the distances was within the certain range, the
range of the absolute distances was not within the certain range.

Ref. I'p negative I
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Experimental Results

* Results of Joint Loss Function on Validation Set
= 55,747 face images are used as a validation set.

Accuracy (%) Error reduction

DNN + Ligentity (baseline) 88.17 -
DNN + Lyrivier + Ligentic 91.32 26.62%

DNN + Ltriplet + Lpairs + Lidentity 44.63%
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