
Deep	Convolutional	Neural	Network	using	
Triplet	of	Faces,	Deep	Ensemble,	and	Score-

level	Fusion	for	Face	Recognition

Bong-Nam	Kang*,	Yonghyun Kim†,	and	Daijin Kim†

*Dept.	of	Creative	IT	Engineering,	
†Dept.	of	Computer	Science	&	Engineering
{bnkang,	gkyh0805,	dkim}@postech.ac.kr

IEEE 2017 Conference on 
Computer Vision and Pattern 

Recognition 



Introduction
• Face	recognition	in	unconstrained	environments	is	very	challenging	
problem.
§ Inter-class	variations

• Facial	poses,	expressions,	and	illumination	changes	cause	problems	to	misidentify	
faces	of	different	identities	as	the	same	identity.

§ Intra-class	variations

• Such	variations	within	the	same	identity	could	overwhelm	the	variations	due	to	identity	
differences	and	make	face	recognition	challenging.
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• Training	for	Features

• Test

Overview

3

Deep 
Neural 

Network 
(DNN)

Feature LearningTriplets of Faces Discriminative Features

Multiple 
DNNs

TL-Joint 
Bayesian 
Classifier

Same
or 

Not?

Feature Extraction ClassificationInput Face Images



• Joint	Loss	Function	for	Feature	Learning

• Triplet	Loss	𝑳𝒕𝒓𝒊𝒑𝒍𝒆𝒕𝒔

§ The	output	of	network	is	represented	by	𝐹 𝐼 ∈ 𝑅-.
§ 𝑚 is	a	margin:	define	the	minimum	ratio	between	the	negative	pairs	and	the	positive	

pairs	in	the	Euclidean	space

Discriminative	Feature	Learning	(1/2)
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• Pairwise	Loss		𝑳𝒑𝒂𝒊𝒓𝒔
§ Minimize	the	absolute	distances	between	the	positive	data	in	the	triplets	𝑇.

• Identity	loss	𝑳𝒊𝒅𝒆𝒏𝒕𝒊𝒕𝒚

§ Use	negative	log-likelihood	loss	with	softmax.
§ Reflect	characteristics	for	each	identity.
§ Encourage	the	separability	of	features

Discriminative	Feature	Learning	(2/2)
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Description	using	Deep	Ensemble	(1/2)
• Features	for	Ensemble

§ In	conventional	applications	of	DCNN,	the	output	of	the	last	fully	connected	layer	f2 is	
used	only	as		a	feature.

§ Use	DNN	features	taken	from	f1 and	f2 fully	connected	layers.
èMulti-scale	feature	effect
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Description	using	Deep	Ensemble	(2/2)
• Deep	Ensemble
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Fusion
• Score-level	fusion

§ Use	similarities	DCNN	ensemble	and	similarities	of	high-dim.	LBP	as	features.
§ Use	Support	Vector	Machine	(SVM)	as	a	classifier	(recognizer).
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Experimental	Results	(1/2)
• Training	data

§ 4,048	subjects	with	more	than	equal	
10	images	(198,018).

§ 396,036	face	images	(horizontal	
flipped)	are	used	to	generate	about	
4M triplets	of	faces	for	training.

• Test	data	- LFW	(Labeled	Faces	in	the	
Wild)
§ Each	of	10	folders	consists	of	300	intra	

pairs	and	300	extra	pairs	
(total:	6,000	pairs).

§ 10-fold	cross	validation.
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Experimental	Results	(2/2)
• Results	on	LFW
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Method No.	of
images

No. of	
DNNs Feature dim. Accuracy	(%)

Human - - - 97.53
Joint	Bayesian 99,773 - 8,000 92.42

Fisher vector	face N/A - 256 93.03
Tom-vs-Pete	classifier 20,639 - 5,000 93.30

High-dim.	LBP 99,773 - 2,000 95.17
TL-Joint	Bayesian 99,773 - 2,000 96.23

DeepFace 4M 9 4,096 x 4 97.25
DeepID 202,599 120 150 (PCA) 97.45
DeepID3 300,000 50 300 x 100 99.53
FaceNet 200M 1 128 99.63

Learning	from	Scratch 494,414 2 320 97.73
Proposed	Method	(+Joint	Bayesian) 198,018 4 1,024 

(PCA) 96.23

Proposed	Method	(+TL-Joint	Bayesian) 198,018 4 1,024 
(PCA) 98.33

Proposed	Method	(Fusion) 198,018 4 6 99.08



Discussion	&	Conclusion

• Joint	Loss	Function	to	learn	a	discriminative	feature	is	effective

• The	proposed	method	is	more	efficient
§ Small	number	of	data	- only	198,018	training	images
§ Only	4	different deep	network	models	used
§ Accuracy:	99.08%	(Score-level	Fusion)

• The	proposed	method	is	useful	when
§ The	amount	of	training	data	is	insufficient	to	train
deep	neural	networks.
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Thank	you	!!!
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Appendix
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• Multi-scale	Convolution	Layer	Block	(MCLB)
§ Consists	of	1x1,	3x3,	5x5	convolution	layers,	and	3x3	max	pooling	layer.

Deep	Convolution	Neural	Network	Architecture
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• Structure	of	Deep	Convolution	Neural	Network
§ Constructed	by	stacking	MCLBs	on	top	of	each	other	(24	layers	deep).
§ All	convolutions	and	fully	connected	layers	use	the	ReLU non-linear	activation.
§ Average	pooling	takes	the	average	of	each	feature	map	and	sums	out	the	spatial	

information.
§ Dropout	is	only	applied	to	the	last	fully	connected	layer	for	regularization.



• After	training	with	only	triplet	loss,	we	observed	that	the	range	of	
distances	between	each	pair	data	was	not	within	the	certain	range.
§ Although	the	ratio	of	the	distances	was	within	the	certain	range,	the	
range	of	the	absolute	distances	was	not	within	the	certain	range.

Discriminative	Feature	Learning
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Experimental	Results
• Results	of	Joint	Loss	Function	on	Validation	Set

§ 55,747	face	images	are	used	as	a	validation	set.
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Accuracy	(%) Error reduction

DNN	+	𝐿Z-[\]Z]^ (baseline) 88.17 -

DNN	+	𝐿]_Z`a[] + 𝐿Z-[\]Z]^ 91.32 26.62%

DNN	+	𝐿]_Z`a[] +	𝐿`bZ_c + 𝐿Z-[\]Z]^ 93.45 44.63%


